Neutrinoless double beta decay: expectations, uncertainties and interactions with cosmological surveys

S Marcocci¹, S Dell’Oro¹ and F Vissani²

¹Gran Sasso Science Institute (GSSI), Italy, ²LNGS (INFN), Italy

The current status of the neutrinoless double beta decay ($0\nu\beta\beta$) search is summarized, exploiting the most up-to-date knowledge of the oscillation parameters (2016 global analysis) and of the recent theoretical developments in the understanding of the $0\nu\beta\beta$ process, especially those concerning the nuclear description and its limitations. This also allows to infer expectations and uncertainties for the experimental search for the $0\nu\beta\beta$.

In addition, the strong relevance of post-Planck 2015 cosmological analyses for the study of $0\nu\beta\beta$ is pointed out. Several combinations of data probing different scales indicate very stringent bounds on the sum of the active neutrino masses, Σ. These developments have just become very relevant for numerous laboratory investigations including the ones for the $0\nu\beta\beta$ search. In light of this new available information, the allowed values for the Majorana effective mass are pushed below the 100meV value at 90%C.L. Such results motivate further cosmological investigations of neutrino masses and have a great importance for the interpretation of future generations of $0\nu\beta\beta$ experiments. If these limits are confirmed, the impact will be tremendous since the possibility of detecting a signal induced by light neutrino exchange will be out of the reach of the next generation of experiments. On the other side, a $0\nu\beta\beta$ signal in the near future would indicate exciting scenarios. In fact, this could be an indication either of some other mechanisms mediating the $0\nu\beta\beta$ transition or that (at least) part of the current cosmological modeling is wrong.