P3.052 NEOS: Search for sterile neutrino at short baseline using a nuclear reactor

Y Oh¹, Y Kim¹, H Park¹, M H Lee¹, J Lee¹, E Jeon¹, K S Park¹, K Joo², B R Kim², G-M Sun³ and B-Y Han³

¹Institute for Basic Science, South Korea, ²Chonnam National University, South Korea, ³Korea Atomic Energy Research Institute, South Korea

on behalf of NEOS collaboration

The existence of sterile neutrinos may explain the discrepancy between the recent calculation and experimental measurements for the reactor anti-neutrino flux. The sterile neutrino can be searched by measuring the distortion of the anti-neutrino energy spectrum at a very short distance from the reactor core. NEOS, Neutrino Experiment for Oscillation at Short Baseline, measured the anti-neutrino energy spectrum at 24m baseline, in the tendon gallery of a 3 GWth commercial reactor in Yeonggwang, South Korea. A 1000L of homogeneous liquid scintillator target doped with 0.5% Gd was used to detect e+ and neutron coincidence from the inverse beta decay. The experiment has taken data for about 8 months, reactor off for 2 months and reactor on for the last 6 months. We observed about 2,000 IBD events per day with the signal to background ratio 20. We observed the disagreement between the calculation and the experimental data in the energy spectrum around 5 MeV for the first time in the short baseline reactor experiments, as in the θ_{13} experiments. In this talk, we will present the sterile neutrino search with our data sample.